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Harder, Better, Faster, Stronger

Semi-Auto Vulnerability Research
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Professional Vulnerability Research

● Finding bugs is not the problem 
▸ Fuzzing works 

● Microsoft found over 1800 bugs in Office 2010 
– http://

blogs.technet.com/b/office2010/archive/2010/05/11/how-the-sdl-helped-improve-security-in-offic
e-2010.aspx

● 280 bugs found in Mozilla JavaScript using JSFunFuzz
– https://bugzilla.mozilla.org/show_bug.cgi?id=jsfunfuzz

● Tooling is not the problem 
▸ Distributed fuzzing
▸ Crash analyzers

● Lack of intelligent workflow is the problem 

http://blogs.technet.com/b/office2010/archive/2010/05/11/how-the-sdl-helped-improve-security-in-office-2010.aspx
http://blogs.technet.com/b/office2010/archive/2010/05/11/how-the-sdl-helped-improve-security-in-office-2010.aspx
http://blogs.technet.com/b/office2010/archive/2010/05/11/how-the-sdl-helped-improve-security-in-office-2010.aspx
https://bugzilla.mozilla.org/show_bug.cgi?id=jsfunfuzz
https://bugzilla.mozilla.org/show_bug.cgi?id=jsfunfuzz
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Main Goal

Develop an effective workflow 
and toolset for fuzzing and 
triaging vulnerabil i t ies in a 

production environment
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Ancillary Goals

● Primary
▸ Determine cause and exploitability

▸ Human time efficiency

● Secondary
▸ CPU efficiency

▸ Ease of use
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Keys to Fuzzing Smartly

● Input selection
▸ Most important factor in timely bug discovery

▸ Time management

● Automation
▸ SIMPLE Distributed fuzzing

▸ Crash analysis 

▸ Bucketing

▸ Confidence Rating
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Keys to Smart Bug Triage

● Crash selection 
▸ Select for understanding                

▸ Crash database

▸ Bug classes 

● Program flow analysis
▸ Code coverage

▸ Input Mapping

▸ Taint Analysis
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Input Selection

● Attack Surface Analysis
▸ Determine which areas of the code are reachable 

from external inputs

● Template code coverage
▸ Determine what areas of code are exercised by 

different templates

● Rank templates based upon coverage of 
targeted code or overall attack surface
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Fuzzing

The Miller Theorem

C = code path coverage

T = Time spent Fuzzing

B = Bugs Discovered

●  
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Fuzzing

● Obey the Miller Theorem
▸ Create inputs to maximize coverage

▸ Create the framework to maximize uptime

● Generation vs. Mutation               
▸ If you can, do both!

▸ Mutation is cheaper, still works

● Do as little work as possible
▸ Re-do as little work as possible
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Fuzzing
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Fuzzing – Test Execution

● Watch your tests well
▸ Embedded custom debugger

▸ Be able to gather needed data at crash time

▸ Make use of debugging technologies

▸ Be able to avoid invalid exceptions

● Distribute your tests
▸ Centralized management

▸ Make it easy to add nodes
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Fuzzing – Data Storage

● Use a database!
▸ Store lots of data over time

▸ Easily searched

● What to store
▸ Store what you need for crash selection

▸ All crash information

▸ Software versioning information
● Binary diffs
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Fuzzing - Retesting

● Maintaining a good database allows:
▸ Automated retesting of modified code paths

▸ Automated retesting of crashes in modified code 
paths

● Track bug life across software versions
▸ A bug which lives through a nearby patch can have 

a long shelf-life
● MS08-067 and MS06-040
● ANI
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Triage – Crash Selection

● Which crashes should receive priority?

● What properties make crashes more 
exploitable?
▸ Knowledge! Familiarity!

● Crash database 
▸ Vulnerability properties 

▸ Searchable crash criteria 
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Triage – Crash Selection

● Exception Analysis
▸ Determine level of access exception grants user

● Bug Class Identification
▸ Difficulty of exploitability varies by bug class 

▸ Custom architecture problems
● Custom memory allocators
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Triage – Program Flow Analysis

● Abstract a program into flows 
▸ Code execution

▸ Data dependency

● Code Coverage
▸ Block hit trace for path to exception

▸ Build a graph of program execution

▸ Augment static program graphs
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Triage – Program Flow Analysis

● Input Mapping
▸ Trace APIs or System Calls that perform I/O

▸ Mark data copied from external sources into 
memory

● Taint analysis 
▸ Follow input through the execution of the program 

▸ Determine where the bytes of the crash originated 

▸ Potential for exploit and signature generation 
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Triage – Program Flow Analysis

● Visualization
▸ Provides a graphical representation of program 

structure and execution paths

▸ Visualization allows overlaying multiple graphs and 
datasets using visual cues

▸ Converting data to a visual problem allows rapid 
understanding of large datasets
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Moflow
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[Moflow.png]
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Moflow: Input Selection
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Input Selection - Requirements

● Attack Surface Analysis
▸ Call graph analysis

● Template code coverage
▸ Dynamic tracing

● Template ranking
▸ Coverage graph analysis
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Attack Surface Analysis

● Obtain call graph
▸ IDA2Moflow.idc

▸ LibCodis

● Define APIs that are data entry points
  Input Source I/O API

File NtOpenFile()
NtCreateFile()
SYS_Open()

NtReadFile()
NtWriteFile()
SYS_Read()
SYS_Write()

Networ
k

connect()
accept()

send()
recv()
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Attack Surface Analysis

● Determine reachability graph from each API

δ-wavefront ← RootSet

closure ← 〈〉

While nonEmpty(δ-wavefront) Do

     wavefront ← oneStep(δ-wavefront)

     δ-wavefront ← wavefront − closure

     closure ← closure  δ-wavefront∪

End While

Return closure

δ-wavefront ← RootSet

closure ← 〈〉

While nonEmpty(δ-wavefront) Do

     wavefront ← oneStep(δ-wavefront)

     δ-wavefront ← wavefront − closure

     closure ← closure  δ-wavefront∪

End While

Return closure
δ-wavefront Algorithm – Qadah et al.
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Template Code Coverage

● Dynamic Tracing
▸ Instrument each basic block in a program

▸ Efficiently record execution order of all blocks

● Implementation - PinFlow
▸ Program tracer written as a PinTool

▸ Hook on block cache creation

▸ Inject instructions into cached code blocks

▸ Callback function writes binary struct to ringbuffer
▸ Ringbuffer flushed when full and on program exit



28

Template Code Coverage

● Moflow Visualizer PinFlow Trace Launcher 
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Template Code Coverage

● Advantage – Speed
▸ PIN is much faster than traditional breakpoint or 

trap based solutions

11.57 times faster!

 7zip Benchmark Test  
 Block Tracer Time (sec)
 Process Stalker 20.48
 PinFlow 1.77
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Template Prioritization

● Select functions for attack surface

● Calculate reachability to create attack surface 
graph

● Rank stored traces by number of nodes hit in 
attack surface graph
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Template Prioritization

[TraceRank.png]
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Graph Visualization

[Graph 1]

Moflow Block Trace Graph Visualization
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Fuzzing Automation
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Fuzzing Automation

● Distributed Fuzzing 

● Fuzzer Management

● Data Gathering

● Crash Mining
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Distributed Fuzzing

● Tests are small and atomic
▸ Distribute simply

▸ Make it easy to add systems

▸ Easy to add tests

● Centralized Management
▸ Aids in speedy addition of hardware
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Fuzzer Management

● Customizable yet simple
▸ Ignore first chance exceptions?

▸ Add debugging technologies?

▸ Max test case timeout

● Ease of use is key
▸ Quick recovery for dead hosts

▸ Quick addition of new hosts

▸ Centralized management w/ database
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Fuzzer Management

● Jobs are held in the central DB
▸ Job details passed to workers

▸ Test cases are generated by workers as needed

▸ Successful crashes are returned to the DB with 
details

● Test cases are wrapped with a custom 
debugger

● Data is returned to the central DB
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Basic Worker

Job Collection 
(curl -> sql 
database)

Fuzzing 
Engine 

(anything you 
like!)

CPU Monitor 
(WBEM)

Debugged Test 
Thread 
(dbgext)

Data 
Collection 

(Codis, 
dbgext)

Data 
Reporting

(curl -> sql 
database)
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Data Gathering

● Store what you must
▸ Bucketing

▸ Categorization

▸ Indicators of Exploitability

● Store what you have
▸ Why redo work?

▸ Can’t know what you may need

● Store it smart
▸ Database!
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Crash Mining

● Post-crash analysis is performed on crashes 
deemed “relevant”

● Relevant crashes are those which are:
▸ Familiar to your exploit developers
▸ Relate to your attacking goals

● Relevant crashes are mined as needed from 
the database with queries.
▸ What is relevant changes over time.
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Moflow: Triage
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Triage - Requirements

● Exploitability
▸ Exception information

▸ Deep Trace

● Triggering Condition
▸ Fuzzer feedback

▸ Taint analysis

● Root Cause
▸ Graph analysis
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Triage - Exploitability

● Exception Information
▸ Brutefile outputs XML data containing exception 

information

● Deep Trace
▸ Code Coverage

▸ Attack surface APIs

▸ Dataflow
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Triage - Exploitability

● Dataflow
▸ Once exception is found program is traced using PinFlow to 

gather instruction level instrumentation 

▸ Blocks are hooked during cache and disassembled to 
instrument instructions that access memory

▸ Dataflow callback function records the address and value of 
each memory read or write

● Taint Analysis
▸ Provides exception analysis functions with information about 

controlled bytes

▸ Knowledge of controlled bytes allows more precise analysis 
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Triage – Triggering Condition

● Fuzzer Feedback
▸ As part of exception analysis data Brutefile includes 

information about mutation

● Taint analysis
▸ When triaging a bug from input with unknown 

modifications, perform taint analysis

▸ Forward taint propagation from memory allocated to 
stored data from input file will reveal which bytes 
are referenced in the exception
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Triage – Root Cause

● Graph Analysis
▸ Overlay graphs of several deep traces to determine 

similarity

▸ If execution trace leading up to the crash is identical 
but different bytes were manipulated, root cause 
should be determined

● Taint analysis
▸ Follow tainted data in the exception back to the 

code location that first influenced the memory 
location with external data
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Moflow: Tools
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Console Disassembler

● Console interface for libcodis

● Static Analysis
▸ Instruction Disassembly

▸ Function Detection

▸ Code and Data Cross-References

▸ Function Control Flow Graph

▸ Call Graph

● Import IDA2Moflow and .map files
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Windbg Integration

● CodisExt
▸ Windbg extension using the engextcpp API

▸ Utilizes libcodis to extract disassembly graphs and 
cross-references

▸ Utilizes Windbg DML functionality to allow a 
hyperlinked interface for cross references
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Windbg Integration

0:000> !codis
[codis] Usage:
[codis] !codis load <moduleName>                  Load a module into the 
disassembler engine
[codis] !codis xrefs [functionAddr]               Show caller/callees 
[codis] !codis callers <functionAddr>             Show function callers
[codis] !codis callees <functionAddr>             Show function callees
[codis] !codis names                              Show names in codis database
[codis] !codis dis <moduleName> [functionAddr]    Dump disassembly of a module or 
function
[codis] !codis dot                                Dump a GraphViz DOT file

0:000> !codis load test
[codis] Loading C:\Vulndev\test.exe
 
;------------------------------------------------------------------------------
; File Header
;------------------------------------------------------------------------------
; Binary format: 32-bit PE
; Byte Ordering: Little Endian
; Entry Point:   0000130b
; File Size:     112128 bytes
;-----------------------------------------------------------------------------
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Windbg Integration

0:000> !codis xrefs
[codis] Function: 00401005 sub_00401005
[codis] xrefs to: 00401149
[codis] xrefs from:
[codis] Function: 0040100a sub_0040100a
[codis] xrefs to: 0040100f
[codis] xrefs from:
 
--- SNIP ---
 
[codis] Function: 00411850 sub_00411850
[codis] xrefs to: 00411763
[codis] xrefs from:
[codis] Function: 00411a58 
wrapper_RtlUnwind
[codis] xrefs to: 0040e530 00407732
[codis] xrefs from:
[codis] Function: 44cbe836 sub_44cbe836
[codis] xrefs to: 0040e53

0:000> !codis dot
digraph G {
"00401005"
"0040100a"
"0040100f"
"004010c0"
"0040113a"
 
--- SNIP ---
 
"00401076" -> "0040100a"
"00401058" -> "0040113a"
"0040104b" -> "004010c0"
"0040100f" -> "00401070"
"0040100a" -> "00401030"
}
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Windbg Integration

0:000> !codis dis test 00402eea
00402eea |
........ |  ;;;;;;;;;;;;;;;;;;;;;;;;;;;
........ |  ;;; S U B R O U T I N E ;;;
........ |  ;;;;;;;;;;;;;;;;;;;;;;;;;;;
........ |  sub_00402eea:                               ;  xrefs:  0x00402f68  0x00402f31  
0x004015f7 
........ |  6a 08                   |    push byte  0x8                        ;
00402eec |  68 60 a2 41 00          |    push dword  0x41a260                  ;
00402ef1 |  e8 32 fd ff ff          |    call    <sub_00402c28>                ;
00402ef6 |  e8 2e f9 ff ff          |    call    <sub_00402829>                ;
00402efb |  8b 40 78                |    mov     [eax+0x78], eax               ;
00402efe |  85 c0                   |    test    eax, eax                      ;
00402f00 |  74 16                   |    jz      0x402f18                      ;
00402f02 |  83 65 fc 00             |    and dword  0x0, [ebp-0x4]             ;
00402f06 |  ff d0                   |    call    eax                           ;
00402f08 |  eb 07                   |    jmp     0x402f11                      ;
00402f0a |  33 c0                   |    xor     eax, eax                      ;
00402f0c |  40                      |    inc     eax                           ;
00402f0d |  c3                      |    ret                                   ;
00402f0e |  8b 65 e8                |    mov     [ebp-0x18], esp               ;
00402f11 |
........ |  loc_00402f11:                                                      ;  xrefs:  
0x00402f08 
........ |  c7 45 fc fe ff ff ff    |    mov dword  0xfffffffe, [ebp-0x4]      ;
00402f18 |
........ |  loc_00402f18:                                                      ;  xrefs:  
0x00402f00 
........ |  e8 46 48 00 00          |    call    <sub_00407763>                ;



54

IDA Integration

● IDA2Moflow.idc
▸ Dumps static program call graph

● Module
● Functions
● Calls

▸ Works on all versions of IDA

● Useful to overcome current limitations in static 
analysis provided by libcodis
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Questions?
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● Email: rjohnson@sourcefire.com
richinseattle@gmail.com

● Twitter: Richinseattle

● Email: lgrenier@sourcefire.com
pusscat@metasploit.com

● Twitter: Pusscat

● Special Thanks to Chris McBee!

mailto:rjohnson@sourcefire.com
mailto:richinseattle@gmail.com
mailto:lgrenier@sourcefire.com
mailto:pusscat@metasploit.com
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Extra Slides
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Template Code Coverage

● Dynamic Tracing

● Implementation
▸ Program tracer written as a PinTool

▸ Designed for Win32 platform

▸ Function and Block hooking for Code Coverage

▸ System call hooking for I/O*

▸ Memory reference trace*

▸ Logging to standardized format
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Static Analysis

● Instruction Disassembly

● Function Detection

● Code and Data Cross-References

● Function Control Flow Graph

● Module / Program Call Graph
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Instruction Decoding

● BeaEngine 4
▸ Multi-Architecture

● x86 / x64

▸ High performance
● [stats]

▸ Actively developed 
● [stats]
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Function Detection

● Prologue Detection 
▸ [Image of prologues]

● Static call targets 
▸ [show dynamic call vs static call]
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Code and Data Cross-References

● Disassembly of functions results in extraction 
of CALLs, JMPs, and static data references 

● [image goes here]
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Function Control Flow Graph

● Break a function into basic blocks 
▸ JMP

▸ CALL

▸ RET
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Module / Program Graph
● Enumerate function cross references 

● Support loading multiple modules for inter-
modular call graph 
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Dynamic Analysis

● LibMoflow
▸ High level program analysis library in C#

▸ Code Coverage Analysis

▸ Trace Differencing

▸ Graph Analysis

▸ Tainted Data Analysis
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Code Coverage Analysis

● Augment graph from static analysis with code 
coverage 

● Trace Differencing

● CrashViz
▸ Program Graph
▸ Trace Overlays
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Trace Differencing

● Describe algorithm here
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Graph Analysis

● Loop Detection
▸ Dominator Trees

▸ etc
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File Visualization

● Hex and Strucutred Tree Views

● Visualize Fuzzer File Mutations and other 
session metadata

● Structure Decoding
▸ Office Formats (GUT)

▸ PDF (Only’s lib?)

▸ FLASH (Patrick/Shong’s lib)
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