
1

Harder, Better, Faster, Stronger

Semi-Auto Vulnerability Research

2

Professional Vulnerability Research

● Finding bugs is not the problem
▸ Fuzzing works

● Microsoft found over 1800 bugs in Office 2010
– http://

blogs.technet.com/b/office2010/archive/2010/05/11/how-the-sdl-helped-improve-security-in-offic
e-2010.aspx

● 280 bugs found in Mozilla JavaScript using JSFunFuzz
– https://bugzilla.mozilla.org/show_bug.cgi?id=jsfunfuzz

● Tooling is not the problem
▸ Distributed fuzzing
▸ Crash analyzers

● Lack of intelligent workflow is the problem

http://blogs.technet.com/b/office2010/archive/2010/05/11/how-the-sdl-helped-improve-security-in-office-2010.aspx
http://blogs.technet.com/b/office2010/archive/2010/05/11/how-the-sdl-helped-improve-security-in-office-2010.aspx
http://blogs.technet.com/b/office2010/archive/2010/05/11/how-the-sdl-helped-improve-security-in-office-2010.aspx
https://bugzilla.mozilla.org/show_bug.cgi?id=jsfunfuzz
https://bugzilla.mozilla.org/show_bug.cgi?id=jsfunfuzz

3

Main Goal

Develop an effective workflow
and toolset for fuzzing and
triaging vulnerabil i t ies in a

production environment

4

Ancillary Goals

● Primary
▸ Determine cause and exploitability

▸ Human time efficiency

● Secondary
▸ CPU efficiency

▸ Ease of use

5

Process Breakdown

Attack
Surface
Analysis

Attack
Surface
Analysis

Input
Selectio

n

Input
Selectio

n
FuzzingFuzzing TriageTriage

6

Keys to Fuzzing Smartly

● Input selection
▸ Most important factor in timely bug discovery

▸ Time management

● Automation
▸ SIMPLE Distributed fuzzing

▸ Crash analysis

▸ Bucketing

▸ Confidence Rating

7

Keys to Smart Bug Triage

● Crash selection
▸ Select for understanding

▸ Crash database

▸ Bug classes

● Program flow analysis
▸ Code coverage

▸ Input Mapping

▸ Taint Analysis

8

Input Selection

● Attack Surface Analysis
▸ Determine which areas of the code are reachable

from external inputs

● Template code coverage
▸ Determine what areas of code are exercised by

different templates

● Rank templates based upon coverage of
targeted code or overall attack surface

9

Fuzzing

The Miller Theorem

C = code path coverage

T = Time spent Fuzzing

B = Bugs Discovered

●

10

Fuzzing

● Obey the Miller Theorem
▸ Create inputs to maximize coverage

▸ Create the framework to maximize uptime

● Generation vs. Mutation
▸ If you can, do both!

▸ Mutation is cheaper, still works

● Do as little work as possible
▸ Re-do as little work as possible

11

Fuzzing

Test
Executio

n

Test
Executio

n

Data
Collectio

n

Data
Collectio

n

RetestingRetesting

12

Fuzzing – Test Execution

● Watch your tests well
▸ Embedded custom debugger

▸ Be able to gather needed data at crash time

▸ Make use of debugging technologies

▸ Be able to avoid invalid exceptions

● Distribute your tests
▸ Centralized management

▸ Make it easy to add nodes

13

Fuzzing – Data Storage

● Use a database!
▸ Store lots of data over time

▸ Easily searched

● What to store
▸ Store what you need for crash selection

▸ All crash information

▸ Software versioning information
● Binary diffs

14

Fuzzing - Retesting

● Maintaining a good database allows:
▸ Automated retesting of modified code paths

▸ Automated retesting of crashes in modified code
paths

● Track bug life across software versions
▸ A bug which lives through a nearby patch can have

a long shelf-life
● MS08-067 and MS06-040
● ANI

15

Triage – Crash Selection

● Which crashes should receive priority?

● What properties make crashes more
exploitable?
▸ Knowledge! Familiarity!

● Crash database
▸ Vulnerability properties

▸ Searchable crash criteria

16

Triage – Crash Selection

● Exception Analysis
▸ Determine level of access exception grants user

● Bug Class Identification
▸ Difficulty of exploitability varies by bug class

▸ Custom architecture problems
● Custom memory allocators

17

Triage – Program Flow Analysis

● Abstract a program into flows
▸ Code execution

▸ Data dependency

● Code Coverage
▸ Block hit trace for path to exception

▸ Build a graph of program execution

▸ Augment static program graphs

18

Triage – Program Flow Analysis

● Input Mapping
▸ Trace APIs or System Calls that perform I/O

▸ Mark data copied from external sources into
memory

● Taint analysis
▸ Follow input through the execution of the program

▸ Determine where the bytes of the crash originated

▸ Potential for exploit and signature generation

19

Triage – Program Flow Analysis

● Visualization
▸ Provides a graphical representation of program

structure and execution paths

▸ Visualization allows overlaying multiple graphs and
datasets using visual cues

▸ Converting data to a visual problem allows rapid
understanding of large datasets

20

Moflow

21

22

[Moflow.png]

23

Moflow: Input Selection

24

Input Selection - Requirements

● Attack Surface Analysis
▸ Call graph analysis

● Template code coverage
▸ Dynamic tracing

● Template ranking
▸ Coverage graph analysis

25

Attack Surface Analysis

● Obtain call graph
▸ IDA2Moflow.idc

▸ LibCodis

● Define APIs that are data entry points
 Input Source I/O API

File NtOpenFile()
NtCreateFile()
SYS_Open()

NtReadFile()
NtWriteFile()
SYS_Read()
SYS_Write()

Networ
k

connect()
accept()

send()
recv()

26

Attack Surface Analysis

● Determine reachability graph from each API

δ-wavefront ← RootSet

closure ← 〈〉

While nonEmpty(δ-wavefront) Do

 wavefront ← oneStep(δ-wavefront)

 δ-wavefront ← wavefront − closure

 closure ← closure δ-wavefront∪

End While

Return closure

δ-wavefront ← RootSet

closure ← 〈〉

While nonEmpty(δ-wavefront) Do

 wavefront ← oneStep(δ-wavefront)

 δ-wavefront ← wavefront − closure

 closure ← closure δ-wavefront∪

End While

Return closure
δ-wavefront Algorithm – Qadah et al.

27

Template Code Coverage

● Dynamic Tracing
▸ Instrument each basic block in a program

▸ Efficiently record execution order of all blocks

● Implementation - PinFlow
▸ Program tracer written as a PinTool

▸ Hook on block cache creation

▸ Inject instructions into cached code blocks

▸ Callback function writes binary struct to ringbuffer
▸ Ringbuffer flushed when full and on program exit

28

Template Code Coverage

● Moflow Visualizer PinFlow Trace Launcher

29

Template Code Coverage

● Advantage – Speed
▸ PIN is much faster than traditional breakpoint or

trap based solutions

11.57 times faster!

 7zip Benchmark Test
 Block Tracer Time (sec)
 Process Stalker 20.48
 PinFlow 1.77

30

Template Prioritization

● Select functions for attack surface

● Calculate reachability to create attack surface
graph

● Rank stored traces by number of nodes hit in
attack surface graph

31

Template Prioritization

[TraceRank.png]

32

Graph Visualization

[Graph 1]

Moflow Block Trace Graph Visualization

33

Fuzzing Automation

34

Fuzzing Automation

● Distributed Fuzzing

● Fuzzer Management

● Data Gathering

● Crash Mining

35

Distributed Fuzzing

● Tests are small and atomic
▸ Distribute simply

▸ Make it easy to add systems

▸ Easy to add tests

● Centralized Management
▸ Aids in speedy addition of hardware

36

Fuzzer Management

● Customizable yet simple
▸ Ignore first chance exceptions?

▸ Add debugging technologies?

▸ Max test case timeout

● Ease of use is key
▸ Quick recovery for dead hosts

▸ Quick addition of new hosts

▸ Centralized management w/ database

37

Fuzzer Management

● Jobs are held in the central DB
▸ Job details passed to workers

▸ Test cases are generated by workers as needed

▸ Successful crashes are returned to the DB with
details

● Test cases are wrapped with a custom
debugger

● Data is returned to the central DB

38

Basic Worker

Job Collection
(curl -> sql
database)

Fuzzing
Engine

(anything you
like!)

CPU Monitor
(WBEM)

Debugged Test
Thread
(dbgext)

Data
Collection

(Codis,
dbgext)

Data
Reporting

(curl -> sql
database)

39

Data Gathering

● Store what you must
▸ Bucketing

▸ Categorization

▸ Indicators of Exploitability

● Store what you have
▸ Why redo work?

▸ Can’t know what you may need

● Store it smart
▸ Database!

40

Crash Mining

● Post-crash analysis is performed on crashes
deemed “relevant”

● Relevant crashes are those which are:
▸ Familiar to your exploit developers
▸ Relate to your attacking goals

● Relevant crashes are mined as needed from
the database with queries.
▸ What is relevant changes over time.

42

Moflow: Triage

43

Triage - Requirements

● Exploitability
▸ Exception information

▸ Deep Trace

● Triggering Condition
▸ Fuzzer feedback

▸ Taint analysis

● Root Cause
▸ Graph analysis

44

Triage - Exploitability

● Exception Information
▸ Brutefile outputs XML data containing exception

information

● Deep Trace
▸ Code Coverage

▸ Attack surface APIs

▸ Dataflow

45

Triage - Exploitability

● Dataflow
▸ Once exception is found program is traced using PinFlow to

gather instruction level instrumentation

▸ Blocks are hooked during cache and disassembled to
instrument instructions that access memory

▸ Dataflow callback function records the address and value of
each memory read or write

● Taint Analysis
▸ Provides exception analysis functions with information about

controlled bytes

▸ Knowledge of controlled bytes allows more precise analysis

46

Triage – Triggering Condition

● Fuzzer Feedback
▸ As part of exception analysis data Brutefile includes

information about mutation

● Taint analysis
▸ When triaging a bug from input with unknown

modifications, perform taint analysis

▸ Forward taint propagation from memory allocated to
stored data from input file will reveal which bytes
are referenced in the exception

47

Triage – Root Cause

● Graph Analysis
▸ Overlay graphs of several deep traces to determine

similarity

▸ If execution trace leading up to the crash is identical
but different bytes were manipulated, root cause
should be determined

● Taint analysis
▸ Follow tainted data in the exception back to the

code location that first influenced the memory
location with external data

48

Moflow: Tools

49

Console Disassembler

● Console interface for libcodis

● Static Analysis
▸ Instruction Disassembly

▸ Function Detection

▸ Code and Data Cross-References

▸ Function Control Flow Graph

▸ Call Graph

● Import IDA2Moflow and .map files

50

Windbg Integration

● CodisExt
▸ Windbg extension using the engextcpp API

▸ Utilizes libcodis to extract disassembly graphs and
cross-references

▸ Utilizes Windbg DML functionality to allow a
hyperlinked interface for cross references

51

Windbg Integration

0:000> !codis
[codis] Usage:
[codis] !codis load <moduleName> Load a module into the
disassembler engine
[codis] !codis xrefs [functionAddr] Show caller/callees
[codis] !codis callers <functionAddr> Show function callers
[codis] !codis callees <functionAddr> Show function callees
[codis] !codis names Show names in codis database
[codis] !codis dis <moduleName> [functionAddr] Dump disassembly of a module or
function
[codis] !codis dot Dump a GraphViz DOT file

0:000> !codis load test
[codis] Loading C:\Vulndev\test.exe

;--
; File Header
;--
; Binary format: 32-bit PE
; Byte Ordering: Little Endian
; Entry Point: 0000130b
; File Size: 112128 bytes
;---

52

Windbg Integration

0:000> !codis xrefs
[codis] Function: 00401005 sub_00401005
[codis] xrefs to: 00401149
[codis] xrefs from:
[codis] Function: 0040100a sub_0040100a
[codis] xrefs to: 0040100f
[codis] xrefs from:

--- SNIP ---

[codis] Function: 00411850 sub_00411850
[codis] xrefs to: 00411763
[codis] xrefs from:
[codis] Function: 00411a58
wrapper_RtlUnwind
[codis] xrefs to: 0040e530 00407732
[codis] xrefs from:
[codis] Function: 44cbe836 sub_44cbe836
[codis] xrefs to: 0040e53

0:000> !codis dot
digraph G {
"00401005"
"0040100a"
"0040100f"
"004010c0"
"0040113a"

--- SNIP ---

"00401076" -> "0040100a"
"00401058" -> "0040113a"
"0040104b" -> "004010c0"
"0040100f" -> "00401070"
"0040100a" -> "00401030"
}

53

Windbg Integration

0:000> !codis dis test 00402eea
00402eea |
........ | ;;;;;;;;;;;;;;;;;;;;;;;;;;;
........ | ;;; S U B R O U T I N E ;;;
........ | ;;;;;;;;;;;;;;;;;;;;;;;;;;;
........ | sub_00402eea: ; xrefs: 0x00402f68 0x00402f31
0x004015f7
........ | 6a 08 | push byte 0x8 ;
00402eec | 68 60 a2 41 00 | push dword 0x41a260 ;
00402ef1 | e8 32 fd ff ff | call <sub_00402c28> ;
00402ef6 | e8 2e f9 ff ff | call <sub_00402829> ;
00402efb | 8b 40 78 | mov [eax+0x78], eax ;
00402efe | 85 c0 | test eax, eax ;
00402f00 | 74 16 | jz 0x402f18 ;
00402f02 | 83 65 fc 00 | and dword 0x0, [ebp-0x4] ;
00402f06 | ff d0 | call eax ;
00402f08 | eb 07 | jmp 0x402f11 ;
00402f0a | 33 c0 | xor eax, eax ;
00402f0c | 40 | inc eax ;
00402f0d | c3 | ret ;
00402f0e | 8b 65 e8 | mov [ebp-0x18], esp ;
00402f11 |
........ | loc_00402f11: ; xrefs:
0x00402f08
........ | c7 45 fc fe ff ff ff | mov dword 0xfffffffe, [ebp-0x4] ;
00402f18 |
........ | loc_00402f18: ; xrefs:
0x00402f00
........ | e8 46 48 00 00 | call <sub_00407763> ;

54

IDA Integration

● IDA2Moflow.idc
▸ Dumps static program call graph

● Module
● Functions
● Calls

▸ Works on all versions of IDA

● Useful to overcome current limitations in static
analysis provided by libcodis

55

Questions?

56

● Email: rjohnson@sourcefire.com
richinseattle@gmail.com

● Twitter: Richinseattle

● Email: lgrenier@sourcefire.com
pusscat@metasploit.com

● Twitter: Pusscat

● Special Thanks to Chris McBee!

mailto:rjohnson@sourcefire.com
mailto:richinseattle@gmail.com
mailto:lgrenier@sourcefire.com
mailto:pusscat@metasploit.com

57

Extra Slides

58

Template Code Coverage

● Dynamic Tracing

● Implementation
▸ Program tracer written as a PinTool

▸ Designed for Win32 platform

▸ Function and Block hooking for Code Coverage

▸ System call hooking for I/O*

▸ Memory reference trace*

▸ Logging to standardized format

59

Static Analysis

● Instruction Disassembly

● Function Detection

● Code and Data Cross-References

● Function Control Flow Graph

● Module / Program Call Graph

60

Instruction Decoding

● BeaEngine 4
▸ Multi-Architecture

● x86 / x64

▸ High performance
● [stats]

▸ Actively developed
● [stats]

61

Function Detection

● Prologue Detection
▸ [Image of prologues]

● Static call targets
▸ [show dynamic call vs static call]

62

Code and Data Cross-References

● Disassembly of functions results in extraction
of CALLs, JMPs, and static data references

● [image goes here]

63

Function Control Flow Graph

● Break a function into basic blocks
▸ JMP

▸ CALL

▸ RET

64

Module / Program Graph
● Enumerate function cross references

● Support loading multiple modules for inter-
modular call graph

65

Dynamic Analysis

● LibMoflow
▸ High level program analysis library in C#

▸ Code Coverage Analysis

▸ Trace Differencing

▸ Graph Analysis

▸ Tainted Data Analysis

66

Code Coverage Analysis

● Augment graph from static analysis with code
coverage

● Trace Differencing

● CrashViz
▸ Program Graph
▸ Trace Overlays

67

Trace Differencing

● Describe algorithm here

68

Graph Analysis

● Loop Detection
▸ Dominator Trees

▸ etc

69

File Visualization

● Hex and Strucutred Tree Views

● Visualize Fuzzer File Mutations and other
session metadata

● Structure Decoding
▸ Office Formats (GUT)

▸ PDF (Only’s lib?)

▸ FLASH (Patrick/Shong’s lib)

	Slide 1
	Professional Vulnerability Research
	Main Goal
	Ancillary Goals
	Process Breakdown
	Keys to Fuzzing Smartly
	Keys to Smart Bug Triage
	Input Selection
	Fuzzing
	Fuzzing
	Fuzzing
	Fuzzing – Test Execution
	Fuzzing – Data Storage
	Fuzzing - Retesting
	Triage – Crash Selection
	Triage – Crash Selection
	Triage – Program Flow Analysis
	Triage – Program Flow Analysis
	Triage – Program Flow Analysis
	Slide 20
	Slide 21
	
	Slide 23
	Input Selection - Requirements
	Attack Surface Analysis
	Attack Surface Analysis
	Template Code Coverage
	Template Code Coverage
	Template Code Coverage
	Template Prioritization
	Template Prioritization
	Graph Visualization
	Slide 33
	Fuzzing Automation
	Distributed Fuzzing
	Fuzzer Management
	Fuzzer Management
	Basic Worker
	Data Gathering
	Crash Mining
	Slide 41
	Slide 42
	Triage - Requirements
	Triage - Exploitability
	Triage - Exploitability
	Triage – Triggering Condition
	Triage – Root Cause
	Slide 48
	Console Disassembler
	Windbg Integration
	Windbg Integration
	Windbg Integration
	Windbg Integration
	IDA Integration
	Slide 55
	Slide 56
	Slide 57
	Template Code Coverage
	Static Analysis
	Instruction Decoding
	Function Detection
	Code and Data Cross-References
	Function Control Flow Graph
	Module / Program Graph
	Dynamic Analysis
	Code Coverage Analysis
	Trace Differencing
	Graph Analysis
	File Visualization

